Micropower 70 mA Low Dropout Tracking Regulator/Line Driver

The NCV8184 is a monolithic integrated low dropout tracking voltage regulator designed to provide an adjustable buffered output voltage that closely tracks (± 5.0 mV) the reference input.

The part can be used in automotive applications with remote sensors, or any situation where it is necessary to isolate the output of your regulator.

The NCV8184 also enables the user to bestow a quick upgrade to their module when added current is needed, and the existing regulator cannot provide.

The versatility of this part also enables it to be used as a high-side driver.

Features

- 70 mA Source Capability
- Output Tracks within ±5.0 mV
- Low Input Voltage Tracking Performance (Works Down to V_{REF} = 2.1 V)
- Low Dropout (0.35 V Typ. @ 50 mA)
- Low Quiescent Current
- Thermal Shutdown
- Wide Operating Range
- Internally Fused Leads in SO-8 Package
- NCV Prefix, for Automotive and Other Applications Requiring Site and Change Control

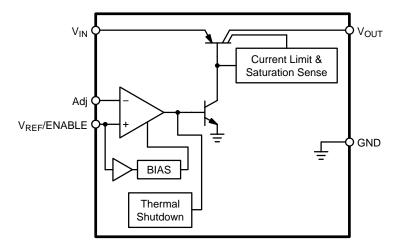
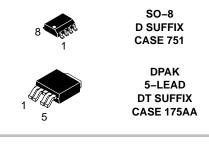
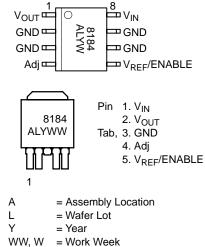



Figure 1. Block Diagram



ON Semiconductor®

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping [†]
NCV8184D	SO-8	95 Units/Rail
NCV8184DR2	SO-8	2500 Tape & Reel
NCV8184DT	DPAK	50 Units/Rail
NCV8184DTRK	DPAK	2500 Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MAXIMUM RATINGS

Ra	ting	Value	Unit
Storage Temperature		-65 to 150	°C
Supply Voltage Range (continuous)	-15 to 42	V	
Supply Voltage Operating Range	4.0 to 42	V	
Peak Transient Voltage (V _{IN} = 14 V, Load I	42	V	
Voltage Range (V _{OUT} , Adj)	-3.0 to 42	V	
Voltage Range (V _{REF} /ENABLE)		-0.3 to 42	V
Maximum Junction Temperature		150	°C
ESD Capability Human Body Model Machine Model		2.5 200	kV V
Lead Temperature Soldering:	Reflow: (SMD styles only) (Note 1)	240 peak (Note 2)	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

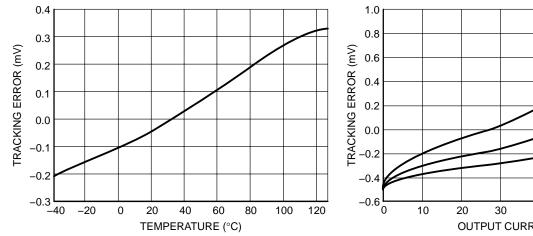
1. 60 second maximum above 183°C.

2. -5°C / +0°C Allowable Conditions

THERMAL CHARACTERISTICS

See Package Thermal Data Section (Page 8)

$\label{eq:electrical characteristics} \ensuremath{\left(\text{V}_{\text{IN}} = 14 \text{ V}; \ensuremath{\left. \text{V}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{\text{C}_{\text{OUT}}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{\text{C}_{\text{OUT}}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{\text{C}_{\text{OUT}}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{\text{C}_{\text{OUT}}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{OUT}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{OUT}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{OUT}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{L}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{OUT}} = 1.0 \ensuremath{\,\mu\text{F}}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{L}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{\left. \text{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < \text{T}_{\text{L}} < +125^{\circ}\text{C}; \ensuremath{C}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < 1.1 \text{ V}; \ensuremath{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{-} -40^{\circ}\text{C} < 1.1 \text{ V}; \ensuremath{P}_{\text{REF}} / \text{ENABLE} > 2.1 \text{ V}; \ensuremath{P$


 I_{OUT} = 1.0 mA; Adj = V_{OUT}; C_{OUT-ESR} = 1.0 Ω , unless otherwise specified.)

Parameter	Test Conditions	Min	Тур	Max	Unit
Regular Output					
V_{REF} /ENABLE – V_{OUT} V_{OUT} Tracking Error		-10 -5.0		10 5.0	mV mV
Dropout Voltage (V _{IN} – V _{OUT})	$I_{OUT} = 100 \ \mu A$ $I_{OUT} = 5.0 \ m A$ $I_{OUT} = 50 \ m A$	- - -	100 250 350	150 500 600	mV mV mV
Line Regulation	$6.0 \text{ V} \leq \text{V}_{\text{IN}} \leq 26 \text{ V}, \text{ V}_{\text{REF}}/\text{ENABLE} = 5.0 \text{ V}$	_	_	10	mV
Load Regulation	100 μ A \leq I _{OUT} \leq 50 mA, V _{REF} /ENABLE = 5.0 V	-	-	10	mV
Adj Input Bias Current	V _{REF} /ENABLE = 5.0 V	-	0.2	1.0	μΑ
Current Limit	V_{IN} = 14 V, V_{REF} /ENABLE = 5.0 V, V_{OUT} = 90% of Adj	70	-	400	mA
Quiescent Current (I _{IN} – I _{OUT})		- - -	5.0 50 -	7.0 70 20	mA μA μA
Ripple Rejection	f = 120 Hz, I_{OUT} = 50 mA, 6.0 V \leq V _{IN} \leq 26 V	60	_	-	dB
Thermal Shutdown	Guaranteed by Design	150	180	210	°C
V _{REF} /ENABLE		•	•	•	
E 11 X/K					

Enable Voltage	_	0.8	-	2.1	V
Input Bias Current	V _{REF} /ENABLE = 5.0 V	-	0.2	1.0	μΑ

PACKAGE PIN DESCRIPTION

Package Le	Package Lead Number		
SO-8	DPAK, 5-LEAD	Lead Symbol	Function
8	1	V _{IN}	Battery supply input voltage.
1	2	V _{OUT}	Regulated output.
2, 3, 6, 7	Tab, 3	GND	Ground.
4	4	Adj	Adjust lead, noninverting input.
5	5	V _{REF} /ENABLE	Reference voltage and ENABLE input.

TYPICAL PERFORMANCE CHARACTERISTICS

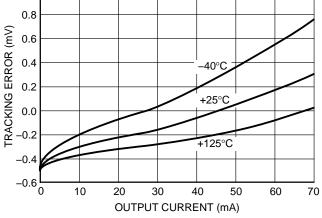


Figure 3. Tracking Error vs. Output Current

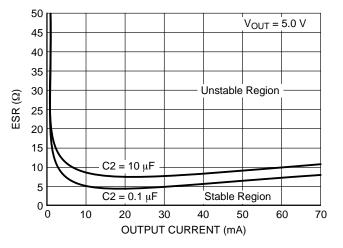


Figure 4. Output Stability with Capacitor Change

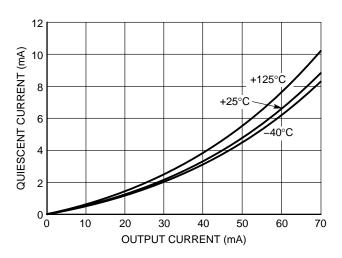


Figure 6. Quiescent Current vs. Output Current

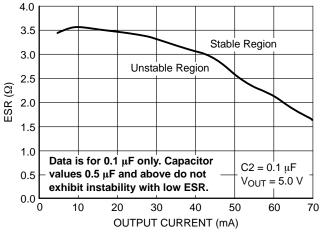


Figure 5. Output Stability with 0.1 μ F at Low ESR

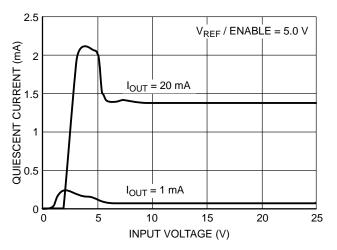
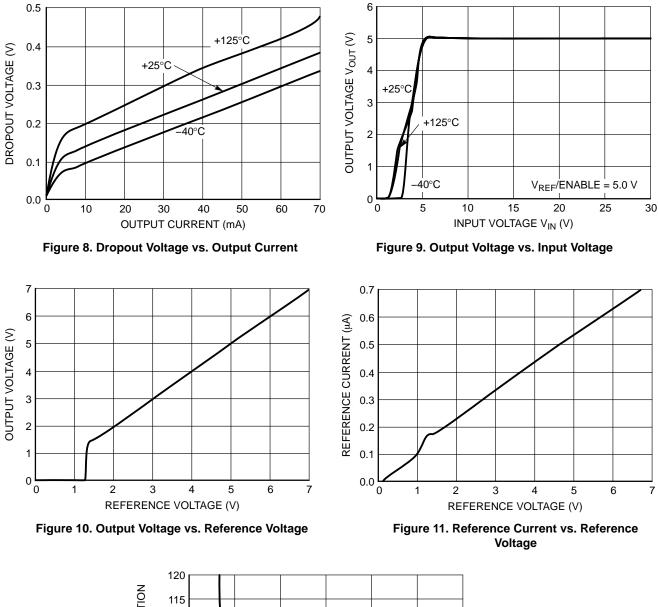
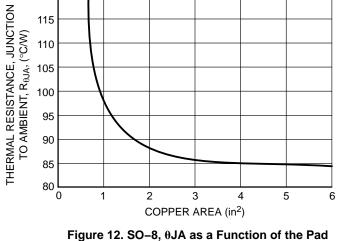
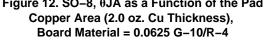
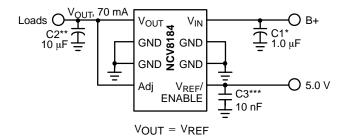
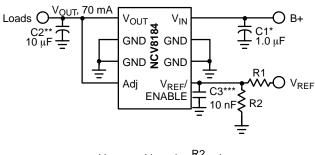





Figure 7. Quiescent Current vs. Input Voltage

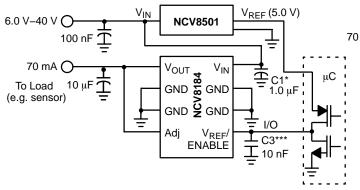
TYPICAL PERFORMANCE CHARACTERISTICS




CIRCUIT DESCRIPTION

ENABLE Function

By pulling the V_{REF}/ENABLE lead below 0.8 V, (see Figure 16 or Figure 17), the IC is disabled and enters a sleep state where the device draws less than 20 μ A from supply. When the V_{REF}/ENABLE lead is greater than 2.1 V, V_{OUT} tracks the V_{REF}/ENABLE lead normally.

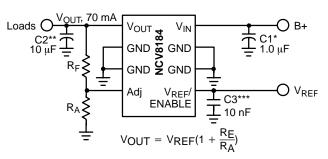


$$V_{OUT} = V_{REF}(\frac{R2}{R1 + R2})$$

Figure 15. Tracking Regulator at Lower Voltages

Figure 17. Alternative ENABLE Circuit

* C1 is required if the regulator is far from the power source filter.


** C2 is required for stability.

*** C3 is recommended for EMC susceptibility

Output Voltage

The output is capable of supplying 70 mA to the load while configured as a similar (Figure 13), lower (Figure 15), or higher (Figure 14) voltage as the reference lead. The Adj lead acts as the inverting terminal of the op amp and the V_{REF} lead as the non-inverting.

The device can also be configured as a high–side driver as displayed in Figure 18.

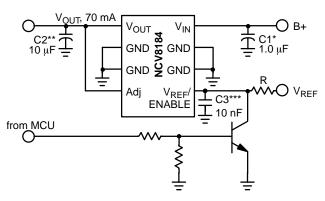
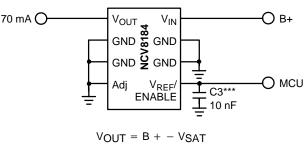
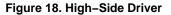
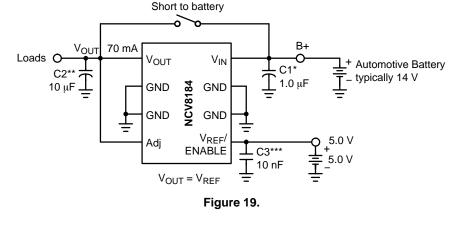
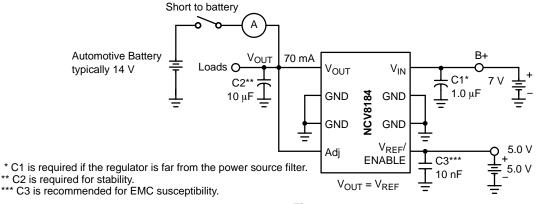




Figure 16. Tracking Regulator with ENABLE Circuit

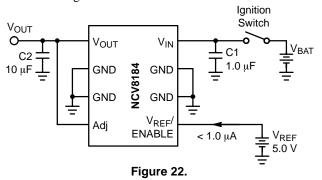




APPLICATION NOTES

V_{OUT} Short to Battery

The NCV8184 will survive a short to battery when hooked up the conventional way as shown in Figure 19. No damage to the part will occur. The part also endures a short to battery when powered by an isolated supply at a lower voltage as in Figure 20. In this case the NCV8184 supply input voltage is set at 7 V when a short to battery (14 V typical) occurs on V_{OUT} which normally runs at 5 V. The current into the device (ammeter in Figure 20) will draw additional current as displayed in Figure 21.



Switched Application

The NCV8184 has been designed for use in systems where the reference voltage on the V_{REF}/ENABLE pin is continuously on. Typically, the current into the V_{REF}/ENABLE pin will be less than 1.0 μ A when the voltage on the V_{IN} pin (usually the ignition line) has been switched out (V_{IN} can be at high impedance or at ground.) Reference Figure 22.

External Capacitors

The output capacitor for the NCV8184 is required for stability. Without it, the regulator output will oscillate. Actual size and type may vary depending upon the application load and temperature range. Capacitor effective series resistance (ESR) is also a factor in the IC stability. Worst–case is determined at the minimum ambient temperature and maximum load expected.

The output capacitor can be increased in size to any desired value above the minimum. One possible purpose of this would be to maintain the output voltage during brief conditions of negative input transients that might be characteristic of a particular system.

The capacitor must also be rated at all ambient temperatures expected in the system. To maintain regulator stability down to -40° C, a capacitor rated at that temperature must be used.

More information on capacitor selection for SMART REGULATOR®s is available in the SMART REGULATOR application note, "Compensation for Linear Regulators," document number SR003AN/D, available through our website at http://www.onsemi.com.

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 23) is:

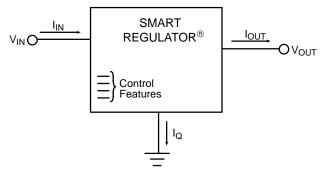
 $PD(max) = \{V_{IN}(max) - V_{OUT}(min)\} I_{OUT}(max) + V_{IN}(max)I_{Q}$ (eq. 1)

where:

 $V_{IN(max)}$ is the maximum input voltage,

V_{OUT(min)} is the minimum output voltage,

 $I_{\mbox{OUT}(\mbox{max})}$ is the maximum output current, for the application, and


 I_Q is the quiescent current the regulator consumes at $I_{OUT(max)}$.

Once the value of PD(max) is known, the maximum permissible value of $R_{\theta JA}$ can be calculated:

$$R_{\theta}JA = \frac{150^{\circ}C - T_A}{P_D}$$
 (eq. 2)

The value of $R_{\theta JA}$ can then be compared with those in the Package Thermal Data Section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in equation 2 will keep the die temperature below 150°C.

In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required.

Figure 23. Single Output Regulator with Key Performance Parameters Labeled

Heatsinks

A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$R_{\theta}JA = R_{\theta}JC + R_{\theta}CS + R_{\theta}SA \qquad (eq. 3)$$

where:

 $R_{\theta JC}$ = the junction–to–case thermal resistance,

 $R_{\theta CS}$ = the case-to-heatsink thermal resistance, and

 $R_{\theta SA}$ = the heatsink-to-ambient thermal resistance.

 $R_{\theta JC}$ appears in the package section of the data sheet. Like $R_{\theta JA}$, it is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heatsink and the interface between them. These values appear in heat sink data sheets of heatsink manufacturers.

PACKAGE THERMAL DATA

Parameter	Test Conditions Typical Value				
SO–8 Package	Min–Pad Board (Figure 24) 1.0 in Pad Board (Figure 25)				
Junction–to–Case top (Ψ –JT, Ψ _{JT})	39	32	°C/W		
Junction–to–Pin 8 (Ψ –JL8, Ψ _{JL8})	63	58	°C/W		
Junction–to–Ambient ($R_{\theta JA}, \theta_{JA}$)	121	98	°C/W		
DPAK 5–Pin Package	0.5 in ² Spreader Board (Figure 26)	1.0 in ² Spreader Board (Figure 27)			
Junction–to–Board (Ψ –JB, Ψ _{JB})	15	15	°C/W		
Junction–to–Pin 3 (tab) (Ψ –JL3, Ψ _{JL3})	16	16	°C/W		
Junction–to–Ambient ($R_{\theta JA}, \theta_{JA}$)	100	69	°C/W		

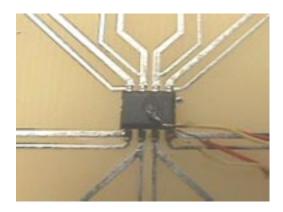


Figure 24. 2.0 oz. copper, 40 mil traces

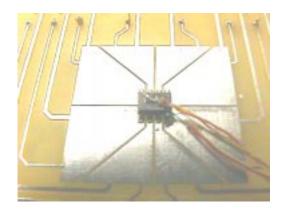


Figure 25. 1.0 oz. copper, approx. 1/8 in² per lead, 1.0 in² total

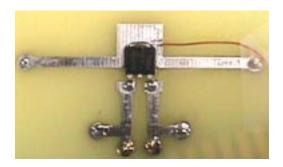


Figure 26. 1.0 oz. copper, 0.3 in² drain pad, 0.5 in² including traces

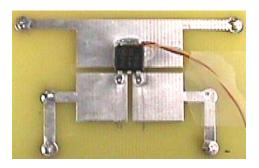


Figure 27. 2.0 oz. copper, 0.5 in² drain pad, 1.0 in² including traces

Table 1. SO-8 Thermal RC Network Models*

	Board Type		Min-Pad	1.0 inch Pad		Min-Pad	1.0 inch Pad	
(SP	(SPICE Deck Format)		Cauer Network		Foster Network			
			Min	1.0 inch	Units	Tau	Tau	Units
C_C1	Junction	Gnd	7.06879E-7	7.06879E-7	W-s/C	2.99E-7	2.99E-7	sec
C_C2	node1	Gnd	3.34499E-6	3.34499E-6	W-s/C	4.40E-6	4.40E-6	sec
C_C3	node2	Gnd	1.00350E-5	1.00350E-5	W-s/C	4.48E-5	4.48E-5	sec
C_C4	node3	Gnd	3.68358E-5	3.68358E-5	W-s/C	2.46E-4	2.46E-4	sec
C_C5	node4	Gnd	4.29554E-4	4.29554E-4	W-s/C	4.72E-3	4.72E-3	sec
C_C6	node5	Gnd	7.20791E-3	7.20791E-3	W-s/C	7.18E-2	7.25E-2	sec
C_C7	node6	Gnd	3.52182E-2	3.76156E-2	W-s/C	1.61E+0	1.31E+0	sec
C_C8	node7	Gnd	7.16622E-1	1.33747E+0	W-s/C	2.08E+1	1.62E+1	sec
C_C9	node8	Gnd	6.57830E+0	3.97588E+0	W-s/C	1.33E+2	1.08E+2	sec
			Min	1.0 inch		R's	R's	
R_R1	Junction	node1	5.17805E-1	5.1780E-1	°C/W	0.34137	0.34137	°C/W
R_R2	node1	node2	1.55341E+0	1.5534E+0	°C/W	0.83581	0.83581	°C/W
R_R3	node2	node3	4.66024E+0	4.6602E+0	°C/W	2.36526	2.36526	°C/W
R_R4	node3	node4	4.98386E+0	4.9838E+0	°C/W	6.76959	6.76960	°C/W
R_R5	node4	node5	1.04570E+1	1.0457E+1	°C/W	10.39190	10.39200	°C/W
R_R6	node5	node6	1.14509E+1	1.1450E+1	°C/W	8.68648	8.81855	°C/W
R_R7	node6	node7	3.94880E+1	2.9500E+1	°C/W	38.62760	31.37390	°C/W
R_R8	node7	node8	3.10554E+1	1.6877E+1	°C/W	27.65780	8.93175	°C/W
R_R9	node8	node9	1.77562E+1	1.8812E+1	°C/W	26.24690	28.98470	°C/W

Table 2. DPAK 5-Lead Thermal RC Network Models*

Drain (Copper Area (1	oz thick)	100 mm ²	653 mm ²		100 mm ²	653 mm ²	
(S	(SPICE Deck Format)		Cauer I	Cauer Network		Foster Network		
			100 mm ²	653 mm ²	Units	Tau	Tau	Units
C_C1	Junction	Gnd	1.51E-06	1.51E-06	W-s/C	1.00E-06	1.00E-06	sec
C_C2	node1	Gnd	6.00E-06	5.91E-06	W-s/C	1.00E-05	1.00E-05	sec
C_C3	node2	Gnd	1.90E-05	1.81E-05	W-s/C	1.00E-04	1.00E-04	sec
C_C4	node3	Gnd	1.05E-04	9.59E-05	W-s/C	7.00E-04	6.00E-04	sec
C_C5	node4	Gnd	2.98E-03	3.21E-03	W-s/C	1.03E-02	1.03E-02	sec
C_C6	node5	Gnd	2.37E-02	7.87E-02	W-s/C	1.71E-01	1.71E-01	sec
C_C7	node6	Gnd	4.95E-02	7.88E-02	W-s/C	1.17E+00	1.17E+00	sec
C_C8	node7	Gnd	2.32E-01	1.03E+00	W-s/C	7.63E+00	7.63E+00	sec
C_C9	node8	Gnd	6.95E-01	1.58E+00	W-s/C	3.93E+01	3.93E+01	sec
C_C10	node9	Gnd	6.91E+00	1.16E+01	W-s/C	1.42E+02	1.42E+02	sec
			100 mm ²	653 mm ²		R's	R's	
R_R1	Junction	node1	0.845	0.850	°C/W	0.507	0.507	°C/W
R_R2	node1	node2	1.886	1.933	°C/W	1.096	1.096	°C/W
R_R3	node2	node3	4.758	5.070	°C/W	3.467	3.467	°C/W
R_R4	node3	node4	5.336	4.862	°C/W	7.168	7.168	°C/W
R_R5	node4	node5	3.735	3.201	°C/W	3.394	3.394	°C/W
R_R6	node5	node6	10.537	5.293	°C/W	4.000	0.720	°C/W
R_R7	node6	node7	19.583	6.828	°C/W	15.000	8.912	°C/W
R_R8	node7	node8	38.068	13.172	°C/W	20.000	3.636	°C/W
R_R9	node8	node9	43.000	16.466	°C/W	50.000	15.161	°C/W
R_R10	node9	gnd	16.884	8.868	°C/W	40.000	22.480	°C/W

*Bold face items in the tables above represent the package without the external thermal system.

The Cauer networks generally have physical significance and may be divided between nodes to separate thermal behavior due to one portion of the network from another. The Foster networks, though when sorted by time constant (as above) bear a rough correlation with the Cauer networks, are really only convenient mathematical models. Cauer networks can be easily implemented using circuit simulating tools, whereas Foster networks may be more easily implemented using mathematical tools (for instance, in a spreadsheet program), according to the following formula:

$$\mathsf{R}(t) = \sum_{i \ = \ 1}^{n} \mathsf{R}_{i} \left(1 - e^{-t/tau_{i}} \right)$$

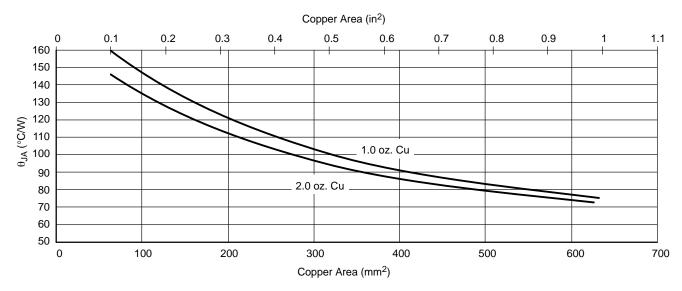
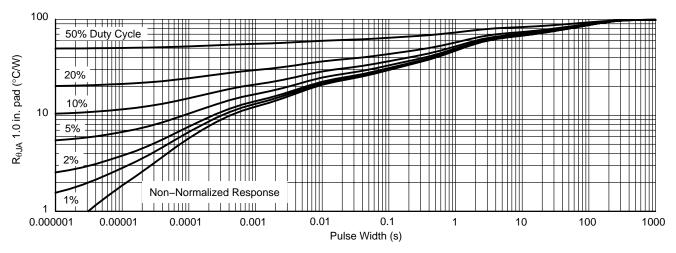
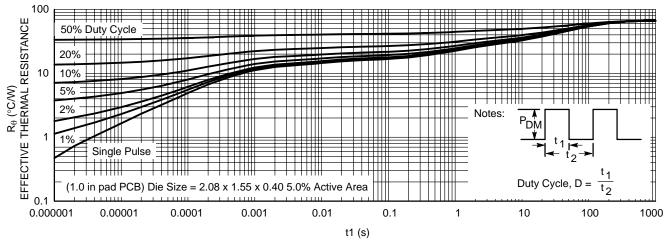
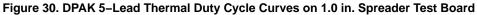
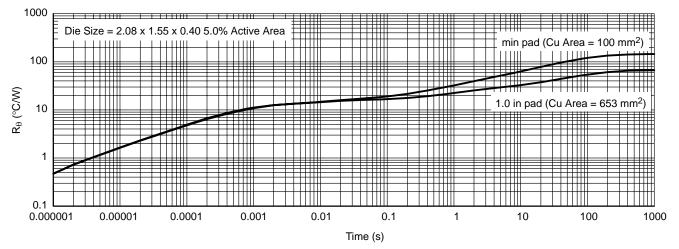
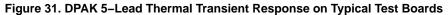
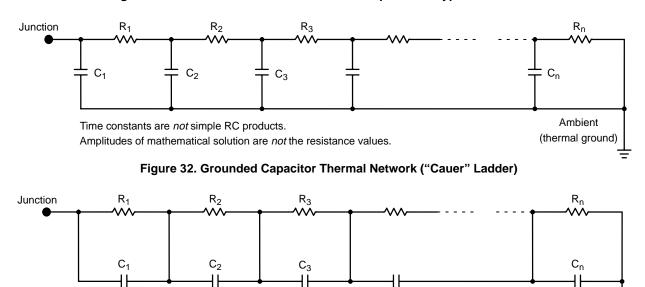
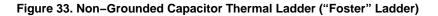


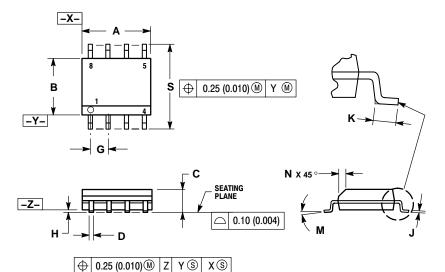
Figure 28. DPAK 5–Lead, θ JA as a Function of the Pad Copper Area Including Traces, Board Material 0.62" Thick FR4


Figure 29. SO-8 Thermal Duty Cycle Curves on 1.0 in. Spreader Test Board



Each rung is exactly characterized by its RC–product time constant; Amplitudes are the resistances

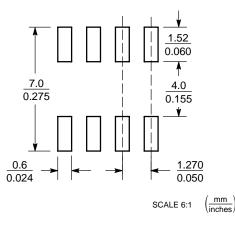


Ambient

(thermal ground)

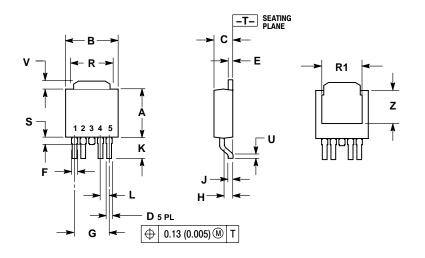
PACKAGE DIMENSIONS

SO-8 **D SUFFIX** CASE 751-07 **ISSUE AB**



NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDAARD IS 751-07


	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
Ν	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

PACKAGE DIMENSIONS

DPAK 5-LEAD CENTER LEAD CROP DT SUFFIX CASE 175AA-01 ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING

PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.22
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.020	0.028	0.51	0.71
Е	0.018	0.023	0.46	0.58
F	0.024	0.032	0.61	0.81
G	0.180	BSC	4.56 BSC	
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
Κ	0.102	0.114	2.60	2.89
L	0.045	BSC	1.14 BSC	
R	0.170	0.190	4.32	4.83
R1	0.185	0.210	4.70	5.33
S	0.025	0.040	0.63	1.01
U	0.020		0.51	
٧	0.035	0.050	0.89	1.27
Z	0.155	0.170	3.93	4.32

Note: Pin 3 and the tab are internally connected

SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal states CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.